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Abstract As crop diseases bring huge losses every year in both developed and developing
countries, determining how to precisely predict crop disease severity to facilitate agricultural
emergency management is really a worldwide problem. Previous studies have introduced
machine learning (ML) techniques into crop disease prediction and achieved better experi-
mental results. However, the architectures of these ML models are unsuitable to model time
series data. Moreover, the dependences among observations over time and across space have
not been taken into account in model construction. By applying data-mining techniques to
dynamic spatial panels of remote sensing data and considering features of bioclimatic,
topographic and soil conditions as a supplement, we propose a novel crop disease prediction
framework for agricultural emergency management based on ensemble learning techniques
and spatio-temporal recurrent neural network (STRNN) which is an extension of recurrent
neural network (RNN) in time and space. Empirical experiments are conducted on a specific
dataset which is built based on reported cases of wheat yellow rust outbreaks in the Longnan
city. Experimental results indicate that our proposed method outperforms all baseline models
in crop disease severity prediction. The managerial implication of our work is that by applying
the proposed methodology, some preparedness measures can be implemented in advance to
prevent or mitigate the possible disasters according to predicted results. Notable economic and
ecological benefits can be achieved by optimizing the frequency and timing of application of
fungicide, pesticides and other preventative measures.
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1 Introduction

Crop diseases can cause huge losses in yield of crops. It is estimated that 16% of harvests in
the eight most important crops is lost due to plant diseases that manifest during pre- and post-
harvest treatment each year [30]. Agricultural emergency management measures reduce such
losses by optimizing the frequency and timing of application of fungicide, pesticides and other
preventative measures and ensure environmental and ecological safety by reducing excessive
chemical application. A prediction model based on the relationship between environmental
conditions before the time of management and crop disease severity can guide and facilitate
management decisions. Thus, the explosive nature of the crop disease might be controlled if a
reliable predictive model is developed. According to predicted results, some preparedness
measures can be implemented in advance to prevent or mitigate the possible disasters. Like all
predictors, crop disease prediction methods sometimes provide incorrect predictions. The
frequency of incorrect predictions will definitely influence the rate of adoption and continue
use of emergency solutions by potential users. In agricultural emergency management, in order
to better configure fungicide, pesticides and other preventative measures, more accurate
prediction models are needed. Thus, we undertook a case study on wheat yellow rust disease
severity prediction by developing a novel deep learning model, spatio-temporal recurrent
neural network (STRNN) and compared its experimental performance with the existing
multivariate statistical approaches and machine learning techniques.

Wheat is grown on the most land area in the world among food crops. Caused by a kind of
fungal pathogen called Puccinia striiformis f.sp.tritici (Pst), yellow rust is one of the most
damaging wheat diseases that occurs during the growing season in most wheat areas with
moist and cool weather conditions [8, 16, 34, 43]. The occurrence of yellow rust, which
produces leaf lesions that are yellow and tend to be grouped in patches, will lead to a severe
impact on both the quality and yield of wheat [3]. The disease severity of the diseased leaf
infected with Pst is usually estimated as a percentage figure. Environmental conditions, such
as temperature, humidity, soil types and topography, are of vital important in the appearance
and spread of the wheat yellow rust fungus. Due to high variability of the pathogen, almost all
resistant varieties are also susceptible to infection so the most commonly used way to fight
against yellow rust epidemics has been the use of fungicides. In order to reduce hazardous
effects brought by excessive use of fungicides, early predictions of disease severity are
required to avoid their unnecessary applications.

Previous studies have investigated the relationship between environmental conditions and
crop disease severity through empirical experiments based on conventional multivariate
regression analysis in various countries, including Ethiopia, Luxembourg, India, France and
Belgium [14, 22, 24, 35, 40]. However, the problem of multi-collinearity has a side effect on
prediction results since some environmental variables in the regression models are interrelated
[23]. Moreover, contrast experiments indicate that the generalization ability of regression
models for crop disease severity prediction is not good enough to be applied in practice [6].
Some pioneering papers have therefore, tried to introduce machine learning techniques into
crop disease severity prediction for better results. Artificial neural networks (ANNs) based
prediction models have been reported to outperform conventional multivariate regression
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techniques in crop disease prediction as ANNs can extract hidden subtle patterns from relevant
multivariate data sources [12, 31, 36]. As machine learning (ML) methods keep on achieving
outstanding results in various fields, attempts to apply advanced ML models, such as support
vector machine (SVM) [6], bayesian networks [32] and random forest [29], in crop disease
prediction continue to emerge and remarkably improve the prediction precision.

However, these ML-based architectures for disease severity prediction have some limita-
tions in model settings. Firstly, most existing researches ignore the fact that environmental
variables are complex multi-dimensional time series, like features of weather and climate data
over a period of time. Thus, the high relevance of dependence between different points of the
time series result in the inappropriateness of simply inputting data into fixed-size networks for
data-mining. The dependence among observations over time should be paid more attention [1].
Secondly, the dependence among observations across space has not been taken into account in
related ML models. More specifically, the disease severity and environmental conditions in
neighboring areas will inevitably affect the disease infection in the near future, which should
not be ignored in disease prediction. Thus, there is an urgent need of exploring a dedicated
framework that exploit the latest advanced prediction techniques and give a more comprehen-
sive consideration of the model construction for better understanding and prediction of the
plant-disease-environment relationship.

In this paper, by applying data-mining techniques to dynamic spatial panels of remote
sensing data and considering features of bioclimatic, topographic and soil conditions as a
supplement, we propose a novel spatio-temporal crop disease prediction framework for
agricultural emergency management based on ensemble learning techniques and STRNN
which is an extension of recurrent neural networks (RNN) in time and space. Empirical
experiments are conducted on a specific dataset which is built based on reported cases of
wheat yellow rust outbreaks in the Longnan city for prediction precision analysis.

The rest of the paper is organized as follows. In Section 2, we review the related work on
crop disease severity prediction and discuss the main differences between our study and
previous researches. In Section 3, we introduce a framework that combines suites of environ-
mental variables for crop disease severity prediction for agricultural emergency management.
The design development of the proposed prediction model are implemented in Section 4.
Section 5 introduces study area and data, evaluation metrics and experimental results. Finally,
Section 6 concludes the paper and suggests further research directions.

2 Literature review

Crop disease prediction is of fundamental importance for the successful and efficient use of
preventative agricultural emergency management measures to manage disease epidemics. Its
specific goal is to predict the disease severity in a certain place at a certain future time by
analyzing the relationship between environment conditions that may affect the appearance,
multiplication and spread of the fungus and the severity of crop infection. In the past few
decades, many research efforts have been devoted to investigating this plant-disease-
environment relationship and improving the prediction accuracy to facilitate management
decisions. These predictive analysis researches can bemainly divided into two categories through
modeling methods: multivariate regression-based works and machine learning-based works.

Conventional multivariate regression analysis has been widely applied in previous studies.
Coakley et al. [11] proposed an improved method to investigate interactions between
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meteorological variables and disease severity and quantified the relationship between climate
and disease by developing statistical models. Te Beest et al. [37] identified the key factors
determining the occurrence and severity of two kinds of disease epidemics on winter wheat
and developed regression models with high-related factors to predict disease severity. Luo
et al. [27] conducted a statistical analysis of relationship between land surface temperature
(LST) and the occurrence of a crop disease and experimental results indicated that prediction
models based on LST were effective. Landschoot et al. [25] firstly introduced ordinal
regression technique into plant disease prediction to deal with ordinal scales. Their proposed
method made it possible to predict whether certain severity thresholds will be exceeded as time
goes by. The advantage of multivariate regression-based model is its interpretability. The
impact of model variables on the output results can be well presented by significance and
coefficient size. However, prediction accuracy is much more important than interpretability in
disease severity prediction as the frequency of incorrect predictions will definitely influence
the rate of adoption and continue use of emergency solutions by potential users.

With the development of artificial intelligence and big data analytics, it is a remarkable fact
that prediction models based on data-mining and machine learning techniques are widespread
and have achieved great success [13, 20]. A few pioneering papers have tried to apply ML
models in crop disease severity prediction [7]. Wolf and Francl [12] was among the first
researches that predicted crop disease with artificial neural network (ANN) technology.
Comparative experiments in an outdoor environment showed that ANNs were more accurate
than traditional statistical procedures. Kaundal et al. [22] selected 6 significant weather factors
as dependent variables to develop weather-based disease prediction models based on SVM.
Their case study showed that SVM outperform existing machine learning approaches and
traditional regression analysis methods. Mehra et al. [24] compared prediction performance of
three machine learning algorithms namely ANN, classification and regression trees and
random forest (RF) on 431 disease cases. Results showed that RF was the most accurate
algorithms with an accuracy rate of 93%. However, these existing ML methods ignore the fact
that environmental variables like features of weather and climate data over a period of time are
complex multi-dimensional time series. The high relevance of dependence between different
points of the time series contain valuable hidden information.

This paper develops a novel spatio-temporal ensemble learning framework for crop
disease prediction based on STRNN which is an extension of RNN in time and space.
Allowing cyclical connections in the network, a recurrent neural network can learn from
all previous inputs to obtain output. RNNs have done well on many sequence learning
problems by virtue of their internal memory [9, 10, 21, 26, 39]. There is a universal
approximation theory for RNNs. An RNN can achieve arbitrary accuracy in approximat-
ing measurable sequence-to-sequence mapping, as soon as it has sufficient number of
hidden units [18]. Along with popular agreement that RNNs are well suited to process,
classify and predict time series, they have begun to be applied in more fields, where time
series data are a common data type [2, 33, 41].

To sum up, the main contributions of this research are fourfold. Firstly, we design a novel
data-mining framework for spatio-temporal prediction of crop disease severity for agricultural
emergency management. Secondly, a new deep learning technique, RNN, which is more
suitable for sequence learning modeling, is introduced in crop disease prediction. Thirdly,
we develop a STRNN-based ensemble learning model that considers both spatial and temporal
dependency in model settings for more effective spatio-temporal mining of possible disease
outbreaks. At last, an empirical analysis is performed to test the effectiveness of the proposed
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method. To the best of our knowledge and belief, this is the first successful research work on
applying a deep learning technique to analyze and predict crop disease severity.

3 A Spatio-temporal prediction framework

The appearance, multiplication and spread of the crop disease fungus will be dynamically
influenced by local and neighboring environmental conditions. In order to better understand
and predict the plant-disease-environment relationship, we propose a dedicated spatio-
temporal framework for wheat yellow rust severity prediction. For the proposed framework,
by summarizing environmental variables used in previous studies, we take bioclimatic, remote
sensing, topographic and soil data into account for prediction of crop disease severity. In
particular, we develop a STRNN-based ensemble learning model for more effective spatial
mining of possible crop disease outbreaks. The proposed prediction framework consists of four
main processes, namely data discovery, data organization, data modeling, and spatio-temporal
prediction, which is outlined in Fig. 1.

Fig. 1 A framework for wheat yellow rust severity prediction
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3.1 Data discovery

During the first step of the proposed framework, data discovery, data sets of environ-
mental variables required for crop disease prediction are searched for and collected. The
pathogenesis and infection characteristics of wheat yellow rust are explored by consult-
ing relevant literatures for domain knowledge. According to previous studies, climatic,
topographic and soil conditions are associated with the possibility of wheat yellow rust
outbreaks, which in a way demonstrates the feasibility of predicting future disease
severity based on various environmental variables [8, 40]. For example, cool and wet
environmental conditions during the growing season are known to favor Pst infection
and spread which inspires us to take temperature and humidity time series as independent
variables of the prediction model to improve its predictive capabilities. In order to better
exploit the implicit relationship of those environmental conditions leading to disease
occurrence, more comprehensive data sources are needed. We discovery environmental
data sets from four aspects: bioclimatic, remote sensing, topographic and soil variables.
The selected data sets consist of time-series data which change over time and non-time-
series data which remain stable for a period of time.

3.2 Data organization

Data organization, in broad terms, refer to the approach of organizing and classifying data sets
to make them more specific and useful [4, 38, 42]. In the field of spatio-temporal prediction,
spatial data fusion should be conducted on multiple spatial data sources firstly. Data fusion is
the process of integrating multiple knowledge and data representing the same real-world object
into an useful, accurate and consistent representation, which facilitates further data analysis
and mining [17, 28]. The study areas are divided into observation spots of the same size with
unique coordinates, which are basic units for data organization, modeling and prediction. The
spatial resolution of these observation spots in our prediction tasks is the minimum spatial
resolution of all data sources. Then the spatial uniform data should be arranged in chronolog-
ical order to prepare for the time-series data mining. Data preprocessing, including data
cleaning, imputation, transformation and normalization, is also done in this step. The phrase
Bgarbage in, garbage out^ clearly illustrates the importance of data processing in data mining
since knowledge discovery will be more difficult if there is too much noise in input data during
training phase. Afterwards, suits of environmental features, including remote sensing, biocli-
matic, topographic and soil features, are extracted from the corresponding data sets for the data
modeling.

3.3 Data modeling

As described above, four kinds of environmental data are combined for crop disease severity
prediction. The environmental features of spot (x,y) at time t are organized as Sx, y, t = (Xx, y, t,
Mx, y) = (Xx, y, t, {Jx, y,Kx, y, Lx, y}), where Xx, y, t represents the NX × 1 vector of remote sensing
features at time t, Jx, y represents the NJ × 1 vector of the bioclimatic features, Kx, yrepresents
the NK × 1 vector of the topographic features and Lx, y represents the NL × 1 vector of the soil
features on the same day. NX, NJ, NK and NL represent the corresponding number of features.
Mx, y represents a set of non-time-series features. As Jx, y, Kx, y and Lx, y remain stable for a long
period of time, we do not consider their short-term changes. The original prediction problem of
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estimating crop disease severity of spot (x,y) at time t given the vector Si of environmental data
can be presented by the formula below:

DSx;y;t ¼ f Sx;y;t−1
� � ¼ f X x;y;t−1;Mx;y

� � ¼ f X x;y;t−1; J x;y;Kx;y; Lx;y
� �� � ð1Þ

where DSx, y, t denotes the predicted disease severity at time t. The dependences among
observations over time and across space have not been considered in this simple formula.
By considering both temporal and spatial dependency of independent and dependent
variables in model settings, a complete spatio-temporal prediction problem can be
presented as follows:

DSx;y;t ¼ f

X x;y;t−1;X x−1;y;t−1;X xþ1;y;t−1;X x;y−1;t−1;X x;yþ1;t−1;…;X x;y;t−2;X x−1;y;t−2;
X xþ1;y;t−2;X x;y−1;t−2;X x;yþ1;t−2;…;Mx;y;Mx−1;y;Mxþ1;y;Mx;y−1;Mx;yþ1;…;

DSx;y;t−1;DSx−1;y;t−1;DSxþ1;y;t−1;DSx;y−1;t−1;DSx;yþ1;t−1;…;
DSx;y;t−2;DSx−1;y;t−2;DSxþ1;y;t−2;DSx;y−1;t−2;DSx;yþ1;t−2;…

0
BB@

1
CCA ð2Þ

As discussed above, crop disease severity prediction can be regarded as a special type
of sequence learning problem. Machine learning methods aim for more accurate predic-
tion results by investigating and exploring hidden pathogenesis patterns relying on
multiple environmental variable sequences. Given that RNNs achieve outstanding per-
formance in dealing with synthetic tasks that require long-range memory, in this paper,
we design a spatio-temporal RNN model to solve the disease severity prediction problem
for agricultural emergency management. In this model, environmental data are mapped to
real value vectors in the input layer after normalization, which guarantees that the
proposed model can deal with different features uniformly. Moreover, in order to
improve prediction accuracy and enhance procedural bias, ensemble techniques including
bootstrap aggregating and random subspace methods are applied to construct several
base STRNN classifiers for ensemble learning. The design development of the proposed
deep learning based ensemble learning model will be introduced in Section 4.

3.4 Spatio-temporal prediction

Our work aims to investigate hidden patterns of the crop disease occurrence relying on
multi-dimensional environmental data and predict the disease severity to facilitate
agricultural emergency management. For our case dataset, each case is labeled with a
disease severity which is assessed according to the Rules for Monitoring and Forecast
of the Wheat Yellow Rust (National Standard of the People’s Republic China, GB/T
15795–2011). We estimate the disease severity as 1%, 5%, 10%, 20%, 40%, 60%, 80%
or 100%.

The ground truths of the crop disease prediction tasks are represented by these labels. The
disease severity of contrast cases where there is no disease occurrence is set to 0%. A balanced
label distribution is maintained to avoid serious learning biases [5, 15]. After the training
process, a STRNN model is established for the future spatio-temporal disease severity
prediction. The final predictive model is established by average calculation of several base
STRNN classifiers to predict disease severity from the test set. Then, we compare the
prediction accuracy with some baseline models on the same evaluation dataset to assess the
effectiveness of our proposed method.
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4 The computational details

In this study, environmental variables that reflect the growth environmental conditions of
wheat consist of time-series variables and non-time-series variables. Changes in environment
conditions over time may lead to changes in disease occurrence and disease severity, which
inspire us to investigate time-series environmental variables using machine learning techniques
suitable for time-series modeling. Moreover, spatial dependency is also considered during
model development. We aim to develop an efficient spatio-temporal deep learning model
based on the extension of RNN for prediction of crop disease severity. The design develop-
ment of the proposed STRNN model is introduced in this section.

As shown in Section 3.3, formula (1) indicates a non-spatial functional relationship between
independent and dependent variables in estimating crop disease severity. Since the disease
severity and environmental conditions in neighboring areas will inevitably affect the disease
infection in the near future, it is necessary to extend the basic non-spatial model with spatial
interaction effects. The first one is endogenous interaction effect, where the dependent variable
of a particular spot depends on the dependent variables of other spots. In other words, the
disease severity of an observation spot will be influenced by the disease severity of other spots.
We assume that the influence domain is a square and the length of its sides is 2D, so the total
number of spots in the influence domain is (2D + 1)2 − 1. A sketch map of spatial influence
domain is outlined in Fig. 2. The central unit in the figure represents the target spot. Then the
functional relationship is updated as follows:

DSx;y;t ¼ f Sx;y;t−1;DSx;y;t−1; ∑
x0 ;y0ð Þ∈ID

DSx0 ;y0 ;t−1

0
@

1
A

¼ f Sx;y;t−1;DSx;y;t−1;DSx−1;y;t−1;DSxþ1;y;t−1;…
� � ð3Þ

where ID refers to the influence domain. Upper-case ∑ is used as a symbol for enumeration
operator instead of summation operator here.

The second spatial interaction effect is exogenous interaction effect, where the dependent
variable of a particular spot depends on the independent variables of other spots. It means that
the disease severity of a spot will be influenced by environmental conditions of other

Fig. 2 A sketch map of spatial influence domain
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neighboring spots. After considering these two spatial interaction effects, the complete form of
spatial model can be presented.

DSx;y;t ¼ f Sx;y;t−1;DSx;y;t−1; ∑
x0 ;y0ð Þ∈ID

Sx0 ;y0 ;t−1 ∑
x0 ;y0ð Þ∈ID

DSx0 ;y0 ;t−1

0
@

1
A ð4Þ

The above model only includes variables with serially lagged value t − 1. Next, the
dependences among observations over time are also considered. We extend the modeling data
sets to dynamic spatial panels and use variable T to indicate the length of the panel. Formula
(5) is the final function form of the spatio-temporal prediction model. The upper-case ∑ is still
used as a symbol for enumeration operator here.

DSx;y;t ¼ f Sx;y;t−1;DSx;y;t−1; ∑
t0∈ t−T ;t−1½ �

Sx;y;t0 ∑
t0∈ t−T ;t−1½ �

DSx;y;t0 ∑
t
0∈ t−T ; t−1½ �
x
0
; y

0� �
∈ID

Sx0 ;y0 ;t0 ∑
t
0∈ t−T ; t−1½ �
x
0
; y

0� �
∈ID

DSx0 ;y0 ;t0

0
BB@

1
CCA

¼ f ∑
t0∈ t−T ;t−1½ �

Sx;y;t0 ;DSx;y;t0 ; ∑
x0 ;y0ð Þ∈ID

Sx0 ;y0 ;t0 ∑
x0 ;y0ð Þ∈ID

DSx0 ;y0 ;t0

0
@

1
A

0
@

1
A

ð5Þ

All variables in the spatial model with the same time stamp are organized as input vectors
for recurrent modeling using RNN. The total number of features N is (2D + 1)2 × (NX +NJ +
NK +NL + 1). Then we employ a double disturbance strategy to keep more differences in an
ensemble system to improve procedural bias through disturbance of both the samples and the
feature spaces. Bootstrap method is applied to randomly sample d features to construct a
random subspace (d <N). By repeating this feature selection step n times, n random subspaces
are obtained. Similarly, n subsamples are generated using bootstrap resampling on the training
set. Each STRNN model is trained based on the combination of a random subspace and a
subsample. The final predictive model is established by average calculation of n base STRNN
classifiers to predict disease severity from the test set. In the proposed framework, spatio-
temporal deep learning algorithm is employed to enhance disease severity prediction capabil-
ities and ensemble learning techniques are used to avoid over-fitting and improve the overall
performance.

Backpropagation is performed to compute the gradients from the output to the input using
the chain rule. For base STRNN model training, stochastic gradient descent is applied using
backpropagation through time (BPTT) algorithm according to the characteristics of the
proposed model structure. The training process continues until all weight matrices reach
convergence. After the network has been trained and established, the output is defined as
the estimate of future disease severity given the relevant dynamic spatial panels of data. The
unfolded form of a single STRNN model is shown in Fig. 3.

5 The empirical analysis

5.1 Data description

Wheat is grown on the most land area in the world among food crops and China is the world’s
largest producer of wheat. The Longnan city, an important pathogen of wheat yellow rust, is
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located in the southeastern parts of the Gansu province, China. Elevation in Longnan ranges
from 500 m to 4187 m above sea level. Pathogenicity variation of wheat yellow rust is the
main cause of disease loss caused by Bloss^ of rust resistance of wheat cultivars. Longnan is
one of the wheat yellow rust easily mutated areas, where resistant varieties will lose resistance
in just a few years, so it is of great importance to take early control of yellow rust through
accurate spatio-temporal prediction of the disease severity for emergency management in the
near future (Fig. 4).

By summarizing environmental variables used in previous studies, a suite of topographic,
soil, bioclimatic and remote sensing variables are selected to model wheat yellow rust severity
in Longnan. MODIS normalized difference vegetation index (NDVI) and leaf area index (LAI)
are used to reveal chlorophyll content and wheat health. Temperature is known to be a key
meteorological factor that influences the distribution of Pst and MODIS land surface temper-
ature (LST) is used to represent the field temperature. Gross primary productivity (GPP) and
net primary productivity (NPP) can reflect the wheat growth situation over a period of
time. By using the MODIS reprojection tool web interface, all selected MODIS layers
were downloaded from the Land Processes Distributed Active Archive Center of the
National Aeronautics Space Agency (NASA LPDAAC). The widely known 19 biocli-
matic moisture- and temperature-related variables [19] (http://www.worldclim.org/) are
included in the proposed model to describe the bioclimatic conditions. Compound

Fig. 3 Unfolding a single STRNN model as a deep network

Fig. 4 Map of the study area
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topographic index (CTI) and elevation, derived from the Digital Elevation Model of the
Shuttle Radar Topography Mission (SRTM DEM), are selected to represent topographic
heterogeneity. All soil variables are obtained from the ISRIC-WISE database. We aim to
mining time series of these environmental variables based on spatial information to carry
out spatio-temporal disease severity prediction. According to news reports and historical
records about epidemic situation of wheat yellow rust during 2010 to 2016, we collected
187 disease severity cases randomly in Longnan. The specific selections of environmental
variables are listed in Table 1.

5.2 Evaluation metrics

The popular 5-fold cross-validation method, which can make full use of every available
case and generally achieve a good trade-off between model over-fitting and under-fitting,
is employed for evaluation of the proposed model. Thus, the dataset is randomly
partitioned into five equally sized slices. For each of the 5 folds, one slice is selected
for testing and the remaining 4 slices are used for training the model. In this way, we can
test the performance of the model on every available case without having used it in the
prior training phase.

Table 1 Environmental variables

Variable types Variable name Data source

Remote sensing Normalized difference vegetation index (NDVI) NASA LPDAAC
Land surface temperature (LST)
Leaf area index (LAI)
Gross Primary Productivity (GPP)
Net Primary Productivity (NPP)

Bioclimatic Max temperature of warmest month WorldClim
Min temperature of coldest month
Temperature seasonality (standard deviation)
Isothermality (diurnal range / annual range)
Annual mean temperature
Mean diurnal range
Annual precipitation
Mean temperature of coldest quarter
Mean temperature of warmest quarter
Mean temperature of driest quarter
Mean temperature of wettest quarter
Temperature annual range
Precipitation of wettest quarter
Precipitation of driest month
Precipitation of wettest month
Precipitation seasonality (coefficient of variation)
Precipitation of coldest quarter
Precipitation of warmest quarter
Precipitation of driest quarter

Topographic Compound topographic index(CTI) SRTM DEM
Elevation

Soil Total nitrogen content(top 20 cm soil horizon) ISRIC-WISE
Clay mass(top 20 cm soil horizon)
Water holding capacity(top 20 cm soil horizon)
Soil types
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The test results are evaluated by three commonly-used performance measures, mean
absolute error (MAE), mean absolute percentage error (MAPE) and root-mean-square error
(RMSE), which are defined as follows.

MAE ¼ 1

n
∑
n

i¼1
ŷ̂i−yij j ð6Þ

MAPE ¼ 1

n
∑
n

i¼1

ŷ̂i−yij j
yi

����
����� 100% ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
ŷ̂i−yið Þ2

s
ð8Þ

where ŷi denotes the predicted disease severity value and yi denotes the observed disease severity
value, respectively. The lower these evaluation metrics, the more accurate the predictions.

5.3 Experimental results

The experimental results under different parameter settings are shown in this section. The
impacts of the side length of the influence domain (2D) and the length of the dynamic spatial
panel (T) on the proposed STRNN-based ensemble learning (STRNN-EL) model are inves-
tigated. The meaning of these two parameters has been introduced in Section 4. They are two
key parameters in the spatio-temporal prediction framework. In the model training, the
learning rate is set to 0.05 and the regularization parameter is set to 1 × 10−7. According to
the experimental results, optimal parameter settings are determined.

Firstly, as an attempt, half of the side length of the influence domain (D) is set to 3. Then,
the values of the evaluation metrics MAE, MAPE and RMSE of the proposed prediction
model are calculated in the cases of T = 1, 2, 3, 4, 5, 6, 7, 8, 9. The results are shown in Fig. 5.
As T increases, the MAPE falls rapidly at the beginning and then grows gently. The MAE and
RMSE curves have a similar trend. When the length of the dynamic spatial panel equals 5, the
proposed model achieve the best experimental performances, with a MAPE value of 22.03%, a
MAE value of 0.0424 and a RMSE value of 0.0547. It is indicated that the environmental
factors a few days before the forecast date do have an impact on wheat yellow rust severity
which can be recognized by our prediction model, as its recurrent structure remembers the
former input of time-series data over a fixed time window. However, dramatic changes in these
performance measures occur when the length of the dynamic panel gets longer, the time
window becomes larger, and the noise in the time-series data begins to influence the prediction
accuracy of the model. Secondly, according to the analysis of the results of the first experi-
ment, the length of the dynamic spatial panel (T) is set to 5. Then, we investigate the impact of
half of side length of the influence domain (D) on the prediction model. The results are shown
in Fig. 6. When D is lower than 4, the three performance measures falls rapidly as D increases.
But as D gets higher than 4, the MAPE begins to grow and the other two measures increase
slowly at first and then remain stable. These results indicate that the increase of spatial
environmental information significantly improves prediction capabilities of the STRNN-EL
model, but there may exist over-fitting when the area of the influence domain is very large.
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5.4 Comparison

As introduced in Section 2, previous studies have mainly applied multiple linear regression
(MLR) and logistic regression (LR) to investigate interactions between meteorological vari-
ables and disease severity and predict future disease occurrences by developing statistical
models. Recently, prediction models based on machine learning techniques have achieved
better results than traditional statistical methods in crop disease prediction. Given the lack of
consensus on the best prediction method, we incorporated several popular classifiers that have
been applied in previous studies as baseline models in comparative experiments. The selected
classifiers are as follows: MLR, LR, artificial neural network (ANN), support vector
machine (SVM) and random forest (RF). In this section, two groups of comparative
experiments were carried out on the same evaluation dataset to evaluate the effectiveness

Fig. 5 Impact of the length of the panel

Fig. 6 Impact of the side length of the ID
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of the proposed spatio-temporal crop disease prediction framework, each of which was
designed to assess the utility of one facet of the framework. Experiment group 1
(presented in Section 5.4.1) evaluates STRNN model in comparison with five baseline
models in predicting wheat yellow rust severity with non-spatial environmental time-
series variables. Experiment group 2 (presented in Section 5.4.2) evaluates the utility of
considering spatial dependency as supplementary information in the prediction model.
The efficacy of using ensemble learning techniques is also tested in this subsection.

5.4.1 Evaluating time-series modeling

STRNN is served as base classifier in the proposed spatio-temporal prediction framework as
RNNs have done well on many synthetic sequence learning tasks by virtue of their internal
memory [10, 21, 39]. Previous regression-based models mainly included environmental time-
series variables. We want to investigate which model can better predict disease severity with
only time-series variables. Statistical methods (MLR, LR), general machine learning models
(ANN, SVM and RF) or RNN? We incorporated paired t-test to test the significance of the
performance improvements of STRNNmodel over the best baseline. A p-Value is calculated to
show the statistical significance of an improvement. If the p-Value is lower than 0.05, the
difference between two evaluation results can be considered statistically significant. The lower
the p-Value, the more significant the improvements. For non-time-series modeling, those time-
series variables are transformed into one-dimension vectors. For example, if the number of
time-series variables isNx and the length of time window in the recurrent modeling is T, then the
total number of variables is NX × T for other models. The evaluation results are shown Table 2.

As can be seen from Table 2, STRNN model outperforms the five baseline models on all
three performance measures. It improves over the best baseline by 30.20% on MAE, 23.31%
on MAPE and 44.52% on RMSE, respectively. Moreover, these improvements are all statis-
tically significant. The results indicate that RNN-based model is better suited for crop disease
severity prediction than traditional statistical methods and general machine learning tech-
niques. The comparative experiments also provide empirical support for the conclusion of
Kaundal et al. [22] that machine learning models perform better than traditional statistical
algorithms in the field of crop disease prediction.

5.4.2 Evaluating the effectiveness of including spatial information

As introduced earlier, the dependence among observations across space has not been taken into
account in related ML models. As a matter of fact, the disease severity and environmental

Table 2 Performances of various methods using time-series variables

Models MAE MAPE RMSE

MLR 0.1431 61.87% 0.2009
LR 0.1201 49.41% 0.1818
ANN 0.1147 46.36% 0.1706
SVM 0.0990 42.91% 0.1620
RF 0.0937 39.72% 0.1543
STRNN 0.0654 30.46% 0.0856
Improvements over the best baseline 30.20%** 23.31%** 44.52%*

* p-Value is lower than 0.05 ** p-Value is lower than 0.01
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conditions in neighboring areas will inevitably affect the disease infection in the near future,
which inspire us to include spatial information in disease prediction. In this section, comparative
experiments were conducted to empirically investigate whether the inclusion of spatial informa-
tion can indeed improve the prediction capabilities. For experimental settings that do not consider
spatial information, only environmental variables and disease severity of the observation spot are
included. The settings of spatio-temporal predictive experiments that consider spatial information
are introduced in Section 4. Table 3 demonstrates the results of this comparative experiment
group. Prediction performances under different evaluation metrics are listed.

By comparing the performances of prediction models in the upper half and the lower half of
Table 3, we can see that with the inclusion of spatial information, all seven models attain better
MAE, MAPE and RMSE values than those using only local environmental variables,
outperforming them by 0.120 on MAE, 4.18% on MAPE and 0.0195 on RMSE on average.
The results of these comparative experiments indicate that the enhanced performances are
attributable to the inclusion of complementary spatial information. The overall MAPE values
of spatio-temporal prediction models range from 20.24% to 55.20%, with a minimum error
attained by the STRNN-EL model. It also has a lowest MAE value of 0.0402 and a lowest
RMSE value of 0.0526 which suggests that the proposed method can predict future disease
severity at a relatively accurate level. In addition, STRNN-EL model performs better than
STRNN model under different evaluation metrics and feature sets. It is convinced that
ensemble learning techniques do help improve the generalization ability of the model by
keeping more disturbances in the ensemble system. Overall, the results of empirical analysis
illustrate the efficacy of STRNN-EL as a viable method for crop disease severity prediction.

5.5 Discussion

The empirical experiments have indicated that the proposed STRNN-based ensemble learning
framework for crop disease severity prediction is effective. RNN-based deep learning models
show their advantages on time-series modeling. Based on reported cases of wheat yellow rust

Table 3 Performances of various methods using all environmental variables

Models without spatial information

MAE MAPE RMSE

MLR 0.1323 59.20% 0.1839
LR 0.1189 45.33% 0.1774
ANN 0.1025 42.32% 0.1702
SVM 0.0971 41.27% 0.1588
RF 0.0906 36.08% 0.1394
STRNN 0.0593 28.54% 0.0743
STRNN-EL 0.0498 26.13% 0.0740
Models with spatial information

MAE MAPE RMSE
MLR 0.1262 55.20% 0.1805
LR 0.0968 39.82% 0.1535
ANN 0.0919 39.44% 0.1554
SVM 0.0913 38.49% 0.1412
RF 0.0724 31.24% 0.0925
STRNN 0.0479 25.16% 0.0661
STRNN-EL 0.0402 20.24% 0.0526
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outbreaks in the Longnan city during 2010 to 2016, we built a specific dataset with relevant
environmental variables and disease severity. Comparative experiment groups conducted on
this dataset have revealed that the proposed ensemble learning framework facilitates the
improvements of disease prediction performances. More concretely, results of comparative
experimental group 1 indicate that STRNN model outperformances traditional statistical
methods and general machine learning techniques on non-spatial time-series modeling. Com-
parative experimental group 2 reveals that the inclusion of spatial information can significantly
improve the prediction capabilities. Ensemble learning techniques are also proved to be an
effective mechanism to improve prediction accuracy and enhance procedural bias.

6 Conclusions and future work

In this paper, we propose a spatio-temporal recurrent neural network model which is an
extension of RNN in time and space to predict wheat yellow rust severity. To the best of our
knowledge, it is the first time that crop disease prediction tasks are analyzed by a deep learning
method. We analyze the patterns of environmental time-series variables by taking advantage of
the properties of RNNs. Based on a full understanding of possible risk factors of wheat yellow
rust, we include a set of bioclimatic, topographic and soil variables to comprehensively
investigate potential relationships between environment conditions and disease severity. Five
key remote sensing indexes, includingMODIS NDVI, LST, LAI, GPP and NPP, are used as the
main time-series features. Bioclimatic, topographic and soil data are extracted fromWorldClim,
SRTMDEM and ISRIC-WISE database, respectively. Empirical experiments are conducted on
a specific dataset which is built based on reported cases of wheat yellow rust outbreaks in the
Longnan city during 2010 to 2016. The empirical experiments validate the appropriateness and
superior performance of our proposed model on wheat yellow rust severity prediction in China.

There are still some potential problems to be settled in future work. For example, how to
retrain the deep learning model in a relatively short time. Applying adaptive learning methods
to fine-tune the weights of the deep networks may be a feasible method. Moreover, better
prediction accuracy is still being pursued by applying advanced pattern recognition techniques.
Determine how to integrate more data sources, such as disease severity analysis results of
remote sensing images, into the prediction framework is also a meaningful work. It is believed
that the performance of the crop disease prediction system for agricultural emergency manage-
ment can be improved to a new step with the inclusion of more comprehensive information.
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